励志的句子 · 范文大全

励志的句子范文大全(编辑 巧克力糖)教案课件是老师工作中的一部分,老师还没有写的话现在也来的及。教案是学生学习过程中的辅助工具。励志的句子的编辑向大家提供了“解一元一次方程课件”,分享可以使我们之间的联系更加亲密!

解一元一次方程课件 篇1

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(1)激发学生浓厚的'学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

2.用去括号解一元一次方程。

教学难点:1.括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号。)

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。

2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

解一元一次方程课件 篇2

1.了解一元一次方程的概念。

1.解下列方程:

2.去括号法则是什么?“移项”要注意什么?

如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的.过程和自觉检验方程的解是否正确的良好习惯。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

1.去括号和添括号法则。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

使学生灵活应用解方程的一般步骤,提高综合解题能力。

1、一元一次方程的解题步骤。

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业 。

解一元一次方程课件 篇3

学习目标

1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2. 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2.

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

这项工作分两 段完成,两段完成的.工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

.

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 X=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答.

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

解一元一次方程课件 篇4

一元一次方程教学反思范文一:

义务教育课程标准实验教科书(人教版)的七年级数学上册的第二章《一元一次方程》,其主要学习目标为:1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型。2、了解解方程的基本目标,熟悉一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴含的化归思想。3、能够“找出实际问题中的已知数和δ知数,分析它们之间的关系,设δ知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。显而易见,以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点和难点。

新课程标准教材不仅考虑数学自身的特点,还遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

本教科书是以一元一次方程的解法为主线,χ绕合并、移项、去分母、去括号几大步骤依次展开的,并把解决各种实际问题也逐一分散到这四大类型中,这样看起来,线索明朗,难点分散,有利于减轻学生的学习负担,其实不然,教学实践证明一元一次方程的解法,对学生来说并不很难,除了由于不细心造成符号错误,去分母©项问题,教学中并û有遇到多大阻碍,而对于利用一元一次方程去解决实际问题则是学生最感头痛之处。如何理清问题中的基本数量,如何找出相等关系列方程,往往使学生们抓耳挠腮,束手无策。所以像本章的知识显得系统性不强,不利于师生的引生的引导和探索,难以让学生体会建立数学模型的思想,不利于提高分析问题、解决问题的能力。

我在教学中认识到这一点,就在七年级两个班中进行对比实验:(1)班按照新课程标准教材编排顺序进行教学,(2)班则打破编排顺序,先集中学习一元一次方程的解法,然后再讨论其应用。并把实际问题按照问题情景进行分类:和(差)倍问题、工程问题、行程问题、浓度问题、等积变形问题、销售中的盈亏问题、商品打折问题、利率问题、方案设计问题等,引导学生探索ÿ类问题的本质,探究其内在联系,构建模型。

本章学习结束后,我们分别对一元一次方程的解法和应用进行对比测试。测试结果表明:对一元一次方程的解法,两种教学方式的效果相关无几,而对利用一元一次方程解决实际问题,两种教学方式的效果则有较大差异,打破教材编排顺序进行教学的(2)班成绩明显高于(1)班。按照标准教材编排进行教学,强调把握全部问题的通性通法,而七年级学校的学生大多数对此感觉难以理解和把握。(1)班学生大多反映解决实际问题时思·不清晰,对于不同的问题不知如何区别对待,而(2)班学生则反映遇到不同的实际问题,脑海中马上就显现出此类问题的通性通法,解决起来有章可循,真正体现建立数学模型的思想。

由此可见,教材ÿ一个问题情景的创设,ÿ一个知识篇章的教学模式的设计,是否具有科学性和有效性,是否适合各个地方各个层次的学生的学习心理特征,有待在教学实践中进一步的探索和研究。因此,我认为在此课程中,教学不是教“教科书”,而是经由“教科书”来教,即教科书不再是不可触犯的“圣经”,而是教学活动的参考依据,是教学活动展开的一种文本和载法。所以教师不能只执行教材,而应根据学生现有的知识基础,灵活地、创造性地利用教材,并且在课堂实施中根据学生的情况,灵活地调整并生成新的教学流程,使课堂处于不断的动态变化之中,这样才符合新课程的要求。

一元一次方程教学反思范文二:

方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

解一元一次方程课件 篇5

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的`工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

解一元一次方程课件 篇6

教学目标:

知识与技能目标:

会从实际问题中抽象出数学模型;会用一元一次方程解决一些实际问题。

过程与方法目标:

通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程。

情感与态度目标:

在积极参与教学活动过程中,初步体验一元一次方程的使用价值,形成实事求是地态度和独立思考的习惯。

教学重点:弄清题意,用列方程的方法解决实际问题。

教学难点:寻找实际问题中的等量关系,建立数学模型。

教辅工具:多媒体课件

教学程序设计:

程序

教师活动

学生活动

设计意图

前面我们学习了:解方程时有括号一般要先去括号,请问去括号时要注意什么要点?

问题1:解下列方程

(1)5X+2(3X-3)=11-(X+5)

(2)10x-4(3-x)-5(2+7x)=15x-9(x-2)

请学生回答之后就5分钟练习

复习回顾有括号的方程的解法。

例2:出示问题:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的速度?

出示幻灯,学生先独立思考

通过解决生活中的实际问题来进一步学习有括号的方程的解法

1.情境解决

问题1:一般情况下可以认为这艘船往返的路程相等,由此可填空:顺流速度________顺流时间________逆流速度_________逆流时间

问题2:教师引导学生寻找相等关系,列出方程。

设船在静水中的速度为x千米/时,则顺流速度为(x+3)千米/时,逆流速度为(x-3)千米/时,列方程,得

2(x+3)=2.5(x-3).

问题3:同学们自己解之后,请一位同学出来展示自己的计算情况

2(x+3)=2.5(x-3)。

去括号,得2x+6=2.5x-7.5

移项,得2x-2.5x=-7.5-6

合并同类项,得-0.5x=-13.5

系数化为1,得x=27

答:船在静水中的速度为27千米/时。

例3:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?

分析:解决问题的关键:

1.如果设x名工人生产螺钉,则_______名工人生产螺母;

2.为了使每天的产品刚好配套,应使生产的螺母恰好是螺钉数量的________.

解:设分配x名工人生产螺钉,其余(22-x)名工人生产螺母,根据螺母数量与螺钉数量的关系,列方程,得

2脳1200x=2000(22-x)

去括号,得2400x=44000-2000x

移项及合并同类项,得4400x=44000

系数化为1,得x=10

生产螺母的人数为22-x=12.

答:应分配10名工人生产螺钉,12名工人生产螺母。

小组讨论后回答问题,并找出等量关系,作出解答

师生共同归纳出解题的方法,抓住合适的等量关系

出示幻灯,学生先独立思考,老师提问

小组讨论后回答问题,并找出等量关系,作出解答

教师边教边引导,让学生明白需找出哪些关键量,建立怎样的等量关系

教师边教边引导,让学生明白需找出哪些关键量,建立怎样的等量关系

巩固

练习

1、1、一架飞机在两城之间航行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离?

2、2、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?

学生动手自行解决问题,个别学生展现解答并讲解

加强对于数量关系的理解和应用

巩固提高这类问题的阅读理解能力和解题能力。

应用提高

1、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨

3、2、某车间每天能生产甲种零件120个,或者乙种零件100个。3个甲种零件和2个乙种零件才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?

学生自行思考,解答出来

学生小组探讨,教师给予适当的指导

展示学生的答案

巩固提高这类问题的阅读理解能力和解题能力。

小结

1、本节课你学习了什么?

水流问题,顺水的速度=静水中的速度+水流的速度

逆水的速度=静水中的速度--水流的速度

一个螺钉要配两个螺母鈥澥锹菽傅母鍪锹荻じ鍪牧奖?/p>

我还学会了用一元一次方程去解决水流问题和配对问题

2、通过今天的学习,你想进一步探究的问题是什么课?还想学习有分母的方程的解法

师生共同小结

让学生自主发现学习配套问题应注意的方面

布置

作业

1.本102页习题3.3第5、7题

2、预习问题和例4、例5

课后

反思

解一元一次方程课件 篇7

2.2从古老的代数书说起---一元一次方程的讨论(1)

【教学目标】1.经历运用方程解决实际问题的过程;2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.通过具体的例子感受一些常用的相等关系式。【对话探索设计】〖探索1〗(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.(2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机?解:设前年购买计算机x台,那么,设计(1)是让学生感受列代数式是列方程的基础。去年购买的计算机的数量是________;今年购买的计算机的数量是________;根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:____________________________.合并得________________.系数化为1得______________.答:______________________.归纳:总量等于各部分量的和是一个基本的相等关系。〖探索2〗(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本。(2) 把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本。(3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本。这个班有多少学生?解: 设这个班级有x名学生,根据第一关系,这批书共_________________本;根据第二关系,这批书共_________________本;这批书的总数是个定值,表示它的两个不同的式子应该相等。熟悉这些关系有助于列方程。根据这一相等关系列得方程:________________________.想一想,怎样解这个方程?归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系。〖练习〗1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨。(2)灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨。每块地各用水多少吨?解:设第二块地(漫灌)用水x吨,根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量×25%),得第一块地(喷灌)用水________吨。根据关系: 两块地共用水300吨,可列方程:__________________________________.解得___________.答:___________________________.〖作业〗p79.练习,p84.1,6〖补充作业〗1.按要求列出方程:(1)x的1.2倍等于36;     (2)y的四分之一比y的2倍大24.2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量。解:设前年的产量是x吨,根据关系: 去年的产量是前年的2倍还多150吨,得去年的产量为______________,根据去年的产量是950吨列方程:__________________ .解得___________.答_________________________.

解一元一次方程课件 篇8

一、教学目标:

1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2、能力目标:培养学生的运算能力与解题思路。

3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二、教学的重点与难点:

1、重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三、教学方法:

1、教 法:讲课结合法

2、学 法:看中学,讲中学,做中学

3、教学活动:讲授

四、课 型:新授课

五、课 时:第一课时

六、教学用具:彩色粉笔,小黑板,多媒体

七、教学过程

1、创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的“她”

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容——解一元一次方程。

2、探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数。)

(抽同学起来回答,然后再由老师概括。)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程

叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次

方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可。)

3、例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2、解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)、在我们前面学过的知识中,什么知识是关于有括号的。

2)、复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号

内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

3)、问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起

来回答。

4)、问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的`性质。

5)、一起回顾合并同类项的法则:未知数的系数相加。

6)、系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

解一元一次方程的步骤:

去括号,移项,合并同类项,系数化为1。

4、巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5小结:和同学们一起回顾我们这节课学习了什么?

解一元一次方程

概念

含括号的一元一次方程的解法

作业:

1、P12 。1

2、预习下一节课的内容,

3、复习此节课的内容,并完成一下两道思考题。

思考:

(1) 解方程:

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括

号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2) 该怎么求解?

解一元一次方程课件 篇9

一、目标:

知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

二、重难点:

重点:学会解一元一次方程

难点:移项

三、学情分析:

知识背景:学生已学过用等式的性质来解一元一次方程。

能力背景:能比较熟练地用等式的性质来解一元一次方程。

预测目标:能熟练地用移项的方法来解一元一次方 程。

四、教学过程:

(一)创设情景

一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

(二)实践探索,揭示新知

1.例2.解方程: 看谁算得又快:

解:方程的两边同时加上 得 解: 6x ? 2=10

移项得 6x =10+2

即 合并同类项得

化系数为1得

大家看一下有什么规律可寻?可以讨论

2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的. 变形叫做移项。

看谁做得又快又准确!千万不要忘记移项要变号。

3.解方程:3x+3 =12,

4.例3解方程: 例4解方程 :

2x=5x-21 x- 3=4-

5.观察并思考:

①移项有什么特点?

②移项后的化简包括哪些

(三)尝试应用 ,反馈矫正

1.下列解方程对吗?

(1)3x+5=4 7=x-5

解: 3x+ 5 =4 解:7=x-5

移项得: 3x =4+5 移项得:-x= 5+7

合并同类项得 3x =9 合并同类项得 -x= 12

化系数为1得 x =3 化系数为1得 x = -12

2解方程

(1). 10x+1=9 (2) 2—3x =4-2x;

(四)归纳小结

1.今天学习了什么?有什么新的简便的写法?

2.要注意什么?

3. 解方程的 一般步骤是什么?

4.. (1) 移项实际上 是对方程两边进行 , 使用的是

(2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

(3)移项的作用是什么?

(五)作业

1.课堂作业:课本习题4.2第二题

2.家作:评价手册4.2第二课时

解一元一次方程课件 篇10

教学目标:

1.知识目标

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2.能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

教学重点:

1.弄清列方程解应用题的思想方法;

2.用去括号解一元一次方程。

教学难点:

1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

教学过程:

一、 创设情境,提出问题

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的`奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

(教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

二、 探索新知

1. 情境解决

问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

问题2:教师引导学生寻找相等关系,列出方程。

根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-20xx)=150000

去括号

6x+6x-12000=150000

移项

6x+6x=150000+12000

合并同类项

12x=162000

系数化为1

x=13500

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+20xx)=150000.(学生自己进行解题)

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。

2. 解一元一次方程去括号

例题:解方程3x-7(x-1)=3-2(x+3)

解:去括号,得3x-7x+7=3-2x-6

移项,得 3x-7x+2x=3-6-7

合并同类项,得 -2x=-10

系数化为1,得x=5

三、 课堂练习

1.课本97页练习

2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

四、总结反思

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

( 由学生自主归纳,最后老师总结)

四、 作业布置

1. 课本102页习题3.3第1、4题

2. 配套资料相关练习

教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

解一元一次方程课件 篇11

【教学目标】

知识与技能

1.理解一元一次方程及解的概念。

2.建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。

过程与方法

通过学生观察、独立思考等过程,培养学生归纳、概括的能力。

情感态度

培养学生由算术解法过渡到代数解法解方程的基本能力,渗透化未知为已知的重要数学思想。

教学重点

体会方程模型的重要性,了解一元一次方程的概念。

教学难点

正确理解方程作为实际问题的数学模型的作用。

【教学过程】

一、情景导入,初步认知

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用方程来解决呢?若能解决,怎样解?用方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们先来了解一下方程。

【教学说明】 引起学生的学习兴趣,激发学生的求知欲。

二、思考探究,获取新知

1.请你表示出下面两个问题中的等量关系。

(1)如图,甲、乙两站的高速铁路长1068,“和谐号”高速列车从甲站开出2.5h后,离乙站还有318,该高速列车的平均速度是多少?

(2)如图,这是一个长方体形的包装盒,长为1.2 ,高为1 ,表面积为6.8 2,这个包装盒的底面宽是多少?

问题(1)的等量关系是:已行驶的路程+剩余的`路程=全长。设高速列车的平均速度是x /h,我们可以用含x的式子表示上述等量关系,即2.5x+318=1 068.

问题(2)的等量关系是:底面积+侧面积=表面积。若设包装盒的底面宽是 ,则等量关系可表示为:1.2××2+×1×2+1.2×1×2=6.8,即:2.4+2+2.4=6.8.

【教学说明】 引导学生分析问题,用文字表示题目中的等量关系式。再根据等量关系式列出式子。

2.观察所列出的两个等式,它们有什么共同特征?

【归纳结论】 我们把含有未知数的等式叫做方程。

像上面这样,把所要求的量用字母x(……)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程。

3.思考:对于2.5x+318=1 068,2.4+2+2.4=6.8方程,有几个未知数,每个未知数的次数是多少?

【教学说明】 组织学生进行全班交流,得出以上方程的特点是:(1)方程中不含分母或分母中不含未知数;(2)只含有一个未知数;(3)未知数的指数都是1.

【归纳结论】 只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。

4.方程的解。

在方程x+5=8中,当x=3时,方程两边的值相等,我们就说x=3是方程x+5=8的解。

【归纳结论】 能使方程左右两边的值相等的未知数的值叫做方程的解。

【教学说明】 了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等,相等则为原方程的解。

三、运用新知,深化理解

1.教材P84例1.

2.下列方程中,是一元一次方程的是( B )

A.x2-4x=3 B.x=0

C.x+2= D.x-1=

3.下列方程中解是x=1的方程是( C )

A.2x-2=3xB.x+5=2x-4

C.3x-6=4x-7D.5x+2=4x-3

4.下列各数中是方程4x-5=7的解的是( B )

A.1 B.3 C.-3 D.4

5.某品牌电饭煲成本价为x元,销售商对其定价为350元,若按8折销售仍可获利15元,根据题意,下面所列方程正确的是( A )

A.350×0.8-x=15B.350×8-x=15

C.350×0.8=x-15D.350×8=x-15

6.以x=-3为解的方程是( D )

A.3x-7=2B.5x-2=-x

C.6x+8=-26D.x+7=4x+16

7.在下列方程中:①x+2=3,② -3x=9,③ =+ ,④ x=0,是一元一次方程的有 ③④ (只填序号).

8.已知方程(-2)x||-1+3=-5是关于x的一元一次方程,则= -2 .

9.若方程(2-1)x2-x+8=x是关于x的一元一次方程,求代数式2 006-∣-1∣的值。

解:由一元一次方程的定义可知:

2-1=0

=±1

当=1时,2 006-∣-1∣=2 006;

当=-1时,2 006-∣-1∣=-2 008.

10.检验下面方程后面括号内所列各数是否为这个方程的解。

2(x+2)-5(1-2x)=-13,{x= -1,1}

解:将x=-1代入方程的两边得

左边=2(-1+2)-5[1-2×(-1)]=-13

右边=-13

因为左边=右边,所以x=-1是方程的解。

将x=1代入方程的两边得

左边=2(1+2)-5(1-2×1)=11

右边=-13

因为左边≠右边,所以x=1不是方程的解。

11.建立下列各问题中的方程模型。

(1)小明去商店买练习册,回来后告诉同学:“店主告诉我,如果多买些就可以享受8折优惠,我就买了20本,结果总共便宜了1.6元,你猜原来每本练习册的价格是多少元?”

解:设原来每本练习册的价格为x元

20(1-80%)x=1.6

(2)张强与刘伟参加植树活动,两人共植树75棵,其中张强比刘伟多植了15棵树。那么刘伟植了多少棵树?

解:设刘伟植了x棵,则可列方程

x+15+x=75

(3)甲队有32人,乙队有28人,现在从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍。问应该从乙队抽调多少人?

解:设应该从乙队抽调x人。则可列方程

32+x=2×(28-x)

(4)某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时,不但完成任务,而且还多生产60件,问原计划每小时生产多少个零件?

解:设原计划每小时生产x个零件,则所列方程为

12(x+10)=13x+60

【教学说明】 对本节知识进行巩固练习。

四、师生互动、课堂小结

先小组内交流收获和感想而后以小组为单位派代表进行总结。教师作以补充。

【课后作业】

布置作业:教材“习题3.1”中第2、3题。

解一元一次方程课件 篇12

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的'解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业

P102:3,10.

解一元一次方程课件 篇13

一。教学目标:

1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2。能力目标:培养学生的运算能力与解题思路。

3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二。教学的重点与难点:

1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三。教学方法:

1。教 法:讲课结合法

2。学 法:看中学,讲中学,做中学

3。教学活动:讲授

四。课 型:新授课

五。课 时:第一课时

六。教学用具:彩色粉笔,小黑板,多媒体

七。教学过程

1。创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2。探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数。)

(抽同学起来回答,然后再由老师概括。)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可。)

3。例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2。解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的'一元一次方程的求解。)

(2)

解:

提示

1)。在我们前面学过的知识中,什么知识是关于有括号的。

2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)。一起回顾合并同类项的法则:未知数的系数相加。

6)。系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1。

4。巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5小结:和同学们一起回顾我们这节课学习了什么?

解一元一次方程

概念

含括号的一元一次方程的解法的解法

作业:1。P12 。1

2。预习下一节课的内容,

3。复习此节课的内容,并完成一下两道思考题。

思考:(1) 解方程: 。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2) 该怎么求解?

  • 解一元一次方程课件十篇

    教师授课时常会准备教案和课件,但其中的知识点需谨慎设计。编写完善的教案和课件需要仔细考虑,包括梳理课程的重点和难点等。是否有可以借鉴的优秀教案和课件呢?下面励志的句子将为大家介绍一篇关于《解一元一次方程课件》的文章,我们提供这些文献和资料供大家参考与使用,希望它们能够帮助你取得进步!...

  • 一元二次方程课件合集

    每位教师在上课前都需要准备教案和课件。为了写好教案和课件,我们需要静下心来。教案是教师不断提高教育教学水平的有效方法。对于写教案和课件,我们可能会有一些疑问。本文从不同的角度和层面来解读了“一元二次方程课件”,仅供参考阅读。...

  • 解一元一次方程课件(通用6篇)

    伴着我们工作的不断优化,我们可能会用到一些范文,范文可以帮助我们自身的写作,让我们来参考一些范文吧!以下是由小编为你整理的《解一元一次方程课件》,供你参考,希望能够帮助到大家。教学目标:1、 使学生会列一元一次方程解有关应用题。2、 培养学生分析解决实际问题的能力。复习引入:1、...

  • 最新解一元二次方程课件(集合十五篇)

    每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。 教案的完善,是新老师让课堂更加生动的步骤,你是否在寻找合适的教案课件呢?本文将为您介绍一下“解一元二次方程课件”的相关信息,下面的信息仅供参考希望大家阅读!...

  • 解一元二次方程课件(优选10篇)

    为了帮助学生更好地掌握上课的知识点,老师需要提前准备教案。如果教案还没有写好,老师就得抓紧时间完成。教案在教育教学实践中扮演着重要的角色,它是"治学先治教"的具体体现。在准备教案课件之前,我们需要考虑哪些问题呢?今天我们整合了一些有关"解一元二次方程课件"的内容,下面有一些文章适合需要的朋友们来看看...

  • 二元一次方程课件

    贯穿全文的主题是“二元一次方程课件”值得深入研究。在给学生上课之前老师早早准备好教案课件,因此老师最好能认真写好每个教案课件。教师要严格按照教案要求进行教学从而增强教学效力。希望本篇文章可以为您提供一些相关的参考信息!...

  • 一元二次方程课件

    了解“一元二次方程课件”的定义及其应用就请继续查看下文,如果对这个话题感兴趣的话,请关注本站。教案课件是老师需要精心准备的,没有写的老师就需要抓紧完成了。教案是完整课堂教学的根本。...

  • 一元一次方程课件优选

    您可以在以下内容中找到与“一元一次方程课件”相关的资料。每位教师在上课前都需要准备一份完整的教案和课件,相信对于编写教案和课件这件事,老师们都不会感到陌生。教案是学生学习过程中的辅助工具。阅读是一种良好的习惯,希望以下内容能为大家提供一些参考和帮助!...