励志的句子 · 范文大全

【#范文大全# #一元二次方程的解教案精品12篇#】学习“一元二次方程的解教案”这篇文章,我们可以获益良多,若想让身边的朋友也获得同样的知识,只需要分享这篇文章即可实现。教案课件对于每位老师来说都是必备的工作准备,每天都要认真撰写。老师在上课时必须依据教案课件来进行教学。

一元二次方程的解教案(篇1)

“一元二次方程的根的判别式”一节,在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的`能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。

教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。

学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。

依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:

知识和技能:

1、感悟一元二次方程的根的判别式的产生的过程;

2、能运用根的判别式,判别方程根的情况和进行有关的推理论证;

3、会运用根的判别式求一元二次方程中字母系数的取值范围;

过程和方法:

1、培养学生的探索、创新精神;

2、培养学生的逻辑思维能力以及推理论证能力。

情感态度价值观:

1、向学生渗透分类的数学思想和数学的简洁美;

2、加深师生间的交流,增进师生的情感;

3、培养学生的协作精神。

一元二次方程的解教案(篇2)

在解一元二次方程时,常常需要用到分解因式,但是教材中一般只介绍了提公因式法、平方差公式法和完全平方公式法.

本期我们将介绍一种在因式分解中起着重要作用的方法:十字相乘法.

先来看一个等式:

(x+a)(x+b)=x²+(a+b)x+ab.

把这个等式反过来写就是:

x²+(a+b)x+ab=(x+a)(x+b).

此时我们可以发现,如果一个式子可以化成x²+(a+b)x+ab的形式,它就可以通过因式分解得到(x+a)(x+b).

而x²+(a+b)x+ab的特点是:二次项x²的系数是1,一次项的系数与常数项有联系,一个是a+b,一个是ab.

现在我们来看两个例题:

分析:因为x的系数是1,所以我们要找两个相加等与1的数,而且这两个数乘积是-6. 于是我们找到了-2和3.

=(x+3)(x-2)=0.

分析:因为x的系数是5,我们就要找两个相加等与5的数,而且这两个数乘积是6. 于是我们找到了2和3.

x²+5x-6=0;

x²+7x+12=0;

x²+3x-10=0;

x²-5x+6=0;

x²-4x+3=0.

有的读者会问为什么叫十字相乘法,这与用这种方法解题的方式有关. 这要从这种方法的更一般的形式说起.

=acx²+(ad+bc)x+bd.

这个等式反过来写就是:

=(ax+b)(cx+d).

我们如果把二次项acx²的系数ac和常数项bd按下图的方式写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc.

让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数.

而在同一行,横着的两个数,让左边的数乘上x再加右边的数,就得到:ax+b和cx+d两个式子,这正是因式分解后得到的结果(ax+b)(cx+d)中的两个因式.

而上图中出现的那个“×”,像个斜放着的“十”字,所以我们称这种方法为:十字相乘法.

这个方法的应用如下:

分析:分别把6和-28进行分解,然后作十字相乘,找可以得到-2的结果.如图:

这里,6分解成2×3,-28分解成4×(-7),作十字相乘,得到两个乘积:-14和12,让两个积相加,就得到一次项的系数-2. 每一行,横着的两个数,左边的数乘x再加上右边的数,得到:2x+4和3x-7.

5x²-25x+20=0.

一元二次方程的解教案(篇3)

1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

4、教学目标 :

(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

(2)用根的判别式解决实际问题。

2、解下列一元二次方程。

(1)x2 -1=0           (2)x2  -2x =-1

(3)(x+1)2- 4=0    (4)x2  +2x+2=0

1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

x2+    x =-

x2+    x+(       )2=(       )2 ―

2

2

2、观察(x+      ) 2=           2     在什么情况下成立?

3、学生分组讨论。

4、猜测?

5、发现了什么?

6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,_________________________

8、总结:

(1)比较分析学生的讨论分析结果。

(2)由学生总结。

(3)教师根据学生总结情况补充完整。

把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,________________________

(三)应用新知:

1、不解方程判定下列一元二次方程根的情况。

(1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

(2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

(3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

2、根据根的情况,求字母系数的取值范围。

例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

(1)读题分析:

A、二次项系数是什么?                     a=_______

B、一次项系数是什么?                     b=_______

C、常数项是什么?                            c=_______

例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

1、把例1、例2整理在作业 本上。

2、有余力的.同学把练习题整理在作业 本。

四、教学后记:

一元二次方程的解教案(篇4)

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,________________________

(三)应用新知:

1、不解方程判定下列一元二次方程根的情况。

(1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

(2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

(3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

2、根据根的情况,求字母系数的取值范围。

例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

(1)读题分析:

A、二次项系数是什么?                     a=_______

B、一次项系数是什么?                     b=_______

C、常数项是什么?                            c=_______

例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

1、把例1、例2整理在作业本上。

2、有余力的同学把练习题整理在作业本。

四、教学后记:

一元二次方程的解教案(篇5)

1、知识与能力目标: 要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.

2。难点:通过实际问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。

问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少?

整理可得 。

问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形?

整理可得 。

问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛?

【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

一元二次方程的解教案(篇6)

1. 下列方程中是一元二次方程的是( ).

A.xy+2=1 B. C. x2=0 D.

2. 白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )

3、关于x的一元二次方程kx2+3x-1=0有实数根,则k的取值范围是( )

A、k≤ B、k≥ 且k≠0 C、k≥ D、k> 且k≠0

4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为 ( )

A.x(x+1)=1035 B.x(x-1)=1035×2 C.x(x-1)=1035 D.2x(x+1)=1035

6、工厂技术革新,计划两年内使成本下降51%,则平均每年下降百分率为( )

A.30% B.26.5% C.24.5% D.32%

7、如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于 的方程 的根,则 的值为 ( )

9、(山西省)请你写出一个有一根为1的一元二次方程: .

10、一元二次方程3x2-23=-10x的二次项系数为: ,一次项系数为: ____ ,常数项为: ___

11、(20本溪)11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为 ,则根据题意可列方程为 .

12、已知方程 的两根平方和是5,则 =

13、已知x2+3x+5的值为11,则代数式3x2+9x+12的值为 .

14、已知m是方程 的一个根,则代数式 的值等于 .

15、设 是一个直角三角形两条直角边的长,且 ,则这个直角三角形的斜边长为

16、若方程x2+px+q=0的两个根是-2和3,则p= q=

17、在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2-b2,根据这个规则,

18、等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长是

22、已知关于x的一元二次方程 的一个根为0,求k的值和方程的另外一个根。

23、 在某次数字变换游戏中,我们把整数0,1,2,…,200称为“旧数”,游戏的变换规则是:将旧数先平方,再除以100,所得到的数称为“新数”。

(1)请把旧数60按照上述规则变成新数;

(2)是否存在这样的旧数,经过上述规则变换后,新数比旧数大75,如果存在,请求出这个旧数;如果不存在,请说明理由。

24、(2009年鄂州)关于x的方程 有两个不相等的实数根.

(1)求k的取值范围。

(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由

25、 已知a、b、c为三角形三边长,且方程b (x2-1)-2ax+c (x2+1)=0有两个相等的实数根. 试判断此三角形形状,说明理由.

26、一个两位数,十位上的数字比个位上的数字的平方小9,如果把个位数字与十位数字对调,得到的两位数比原来的两位数小27,求原来的这个两位数

27、某商店将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高商品售价减少销售量的办法增加利润,如果这种商品按每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?

28、有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的长为35 m,求鸡场的长与宽各为多少?

29、(2009年宁波市)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比20提高30%,投入“供方”的资金将比年提高20%.

(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?

(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?

(3)该市政府预计20将有7260万元投入改善医疗卫生服务,若从2009~年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.

一元二次方程的解教案(篇7)

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

问题(1)《九章算术》勾股章有一题:今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.

问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的.最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

不论m取何值,该方程都是一元二次方程.

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

一元二次方程的解教案(篇8)

一、出示学习目标:

1.继续感受用一元二次方程解决实际问题的过程;

2.通过自学探究掌握裁边分割问题。

二、自学指导:(阅读课本P

1.阅读探究3并进行填空;

2.完成P48的思考并掌握裁边分割问题的特点;

探究?

分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7

设上、下边衬的宽均为右边衬的宽均为7xcm,则:

由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?

设正中央的长方形长为9acm,宽为7acm,依题意得

9题中下层学生在自学完之后先板演

效果检测时,由同座的同学给予点评与纠正

注意点:要善于利用图形的平移把问题简单化!

三、当堂训练:

1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?

(只要求设元、列方程)

2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?

一元二次方程的解教案(篇9)

一、教学目标

【知识与技能】

掌握应用因式分解的方法,会正确求一元二次方程的解。

【过程与方法】

通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

【情感态度价值观】

通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

二、教学重难点

【教学重点】

运用因式分解法求解一元二次方程。

【教学难点】

发现与理解分解因式的方法。

三、教学过程

(一)导入新课

复习回顾:和学生一起回忆平方差、完全平方公式,以及因式分解的常用方法。

(二)探究新知

问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

学生小组讨论,探究后,展示三种做法。

问题:小颖用的什么法?——公式法

小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

师引导学生得出结论:

如果a·b=0,那么a=0或b=0

(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

“或”有下列三层含义

①a=0且b≠0②a≠0且b=0③a=0且b=0

问题3:

(1)什么样的一元二次方程可以用因式分解法来解?

(2)用因式分解法解一元二次方程,其关键是什么?

(3)用因式分解法解一元二次方程的理论依据是什么?

(4)用因式分解法解一元二方程,必须要先化成一般形式吗?

因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

老师提示:

1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

2.关键是熟练掌握因式分解的知识;

3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

(三)巩固提高

1.用分解因式法解下列方程吗?

总结:右化零,左分解,两因式,各求解。

(四)小结作业

用因式分解法求解一元二次方程的步骤:

1.方程化为一般形式;

2.方程左边因式分解;

3.至少一个一次因式等于零得到两个一元一次方程;

4.两个一元一次方程的解就是原方程的解。

一元二次方程的解教案(篇10)

活动一观察

在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索

如图1,观察二次函数y=x2-x-6的图象,回答问题:

(1)图象与x轴的交点的坐标为A(,),B(,)

(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?

活动三猜想和归纳

(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?

这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

一元二次方程的解教案(篇11)

教学内容

根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题

教学目标

掌握面积法建立一元二次方程的数学模型并运用它解决实际问题

利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题

重难点关键

1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题

2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型

教学过程

一、复习引入

1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?

2.正方形的面积公式是什么呢?长方形的面积公式又是什么?

3.梯形的面积公式是什么?

4.菱形的面积公式是什么?

5.平行四边形的面积公式是什么?

6.圆的面积公式是什么?

二、探索新

现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.

例1、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m

(1)渠道的上口宽与渠底宽各是多少?

(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?

分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模

解:(1)设渠深为xm

则渠底为(x+0.4)m,上口宽为(x+2)m

依题意,得: (x+2+x+0.4)x=1.6

整理,得:5x2+6x-8=0

解得:x1= =0.8m,x2=-2(舍)

∴上口宽为2.8m,渠底为1.2m

(2) =25天

答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道

例2、如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?

老师点评:

依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm

一元二次方程的解教案(篇12)

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

  • 最新一元二次方程教案精华14篇

    教案课件是教师必备的教学资料,因此编写教案课件时,教师们需要花费一些时间。教师在上课时需要依据教案课件进行教学。那么,如何做好教案课件的编写呢?今天我向大家推荐一篇网络上的“一元二次方程教案”文章,里面提供了一些思路和想法,供大家参考和借鉴!...

  • 解一元二次方程课件(优选10篇)

    为了帮助学生更好地掌握上课的知识点,老师需要提前准备教案。如果教案还没有写好,老师就得抓紧时间完成。教案在教育教学实践中扮演着重要的角色,它是"治学先治教"的具体体现。在准备教案课件之前,我们需要考虑哪些问题呢?今天我们整合了一些有关"解一元二次方程课件"的内容,下面有一些文章适合需要的朋友们来看看...

  • 解一元一次方程课件10篇

    随着生活水平的提高,我们会遇到许许多多的范文类型,好的范文更具有参考意义,你是否需要一些实用的范文呢?经过搜索和整理,小编为大家呈上解一元一次方程课件10篇,请在阅读后,可以继续收藏本页! 作为一无名无私奉献的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿...

  • 解一元一次方程课件十篇

    教师授课时常会准备教案和课件,但其中的知识点需谨慎设计。编写完善的教案和课件需要仔细考虑,包括梳理课程的重点和难点等。是否有可以借鉴的优秀教案和课件呢?下面励志的句子将为大家介绍一篇关于《解一元一次方程课件》的文章,我们提供这些文献和资料供大家参考与使用,希望它们能够帮助你取得进步!...

  • 二元一次方程课件

    贯穿全文的主题是“二元一次方程课件”值得深入研究。在给学生上课之前老师早早准备好教案课件,因此老师最好能认真写好每个教案课件。教师要严格按照教案要求进行教学从而增强教学效力。希望本篇文章可以为您提供一些相关的参考信息!...

  • 一元二次方程课件

    了解“一元二次方程课件”的定义及其应用就请继续查看下文,如果对这个话题感兴趣的话,请关注本站。教案课件是老师需要精心准备的,没有写的老师就需要抓紧完成了。教案是完整课堂教学的根本。...

  • 二元一次方程组课件

    教案课件是教师必不可少的教育资源,在编写教案时,教师们需要花费一些时间。只有编写好教案,才能真正提高教学质量。为了满足您的需求,励志的句子的编辑为您准备了这份有价值的“二元一次方程组课件”,请您认真阅读文章的内容!...

  • 解一元一次方程课件(通用6篇)

    伴着我们工作的不断优化,我们可能会用到一些范文,范文可以帮助我们自身的写作,让我们来参考一些范文吧!以下是由小编为你整理的《解一元一次方程课件》,供你参考,希望能够帮助到大家。教学目标:1、 使学生会列一元一次方程解有关应用题。2、 培养学生分析解决实际问题的能力。复习引入:1、...