励志的句子范文大全(编辑 笑面虎)推荐一篇介绍“高中数学教案”的文章希望大家会喜欢,即使只是一个小笑话也要分享给您的朋友。老师在正式上课之前需要写好本学期教学教案课件,现在着手准备教案课件也不迟。 精心准备的教学教案和课件有利于激发学生的学习热情。
教师资格证高中数学教案模板向量
资料仅供参考
1本节内容在全书及各章节的状态:
“向量”出现在高中数学第 1 卷(第 2 部分)第 5 章第 1 节。本节内容是传统意义上“平面解析几何”的基础部分,因此在“数学”学科中占有极其重要的地位。
2 数学思维方法分析:
(1)从“向量可以用有向线段表示”所体现的“数”和“形”的变换,可以看“数学”本身的“量化”和“物化”。
(2)从构造手段的角度,在教材提供的材料中,我们可以看到“数与形相结合”的思想。
二、教学目标
根据上述教材结构和内容分析,考虑到学生现有认知结构的心理特点,制定如下教学目标:
1 基础知识目标:掌握“向量”的概念及其表示,并能用它们解决相关问题。
信息仅供参考
2能力培养目标:逐步培养学生观察、分析、综合、类比的能力,准确阐述自己的想法和观点,重点突出关于培养学生的理解认知和元认知能力。
3 创新品质的目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合意识; “向量”的教学旨在培养学生的“知识重组”和“数字形成”意识。
4 人格品质目标:培养学生勇于探索、善于发现、独立意识、不断超越自我的创新品质。
三、教学重点、难点、重点
重点:向量概念的引入。
难点:“数”与“形”的完美结合.
重点:本课着重通过“数与形的结合”培养和发展学生的认知能力和灵活性。
4.教材处理
4.教材处理
strong>
资料仅供参考
建构主义学习理论认为建构是认知结构的形成,其过程一般是先将知识点按逻辑顺序串成知识线线索和内部联系,然后由几条知识线形成一个知识平面,最后形成一个综合体知识面根据其内容、性质、功能、因果等。为什么在本课中提出“数形组合”?应该说,这种处理方法是基于这一理论的体现。其次,本课的过程力求解决以下问题:知识是如何产生的?它是如何发展的?如何从实际问题抽象到数学问题,并赋予抽象的数学符号和表达方式,如何体现生活中客观事物之间的简单和谐关系。
V.教学模式
教学过程是一个非常复杂和动态的教师活动和学生活动的整体。集体意识的过程。教为导,学为主体,互为客体。启动学生自主学习,启发和引导学生实践数学思维的过程,获取知识,发现规律,理解原理,积极发展思维和能力。
六。学习方法
1.让学生在认知过程中专注于掌握元认知过程。
2.让学生将独立思考与多方沟通结合起来。
信息仅供参考
7.教学程序和假设
(1)设置问题,创建场景。
1.提问:在我们的日常生活中,我们不仅会遇到大小不一的数量,还经常会接触到带有方向的数量。这些量应该如何表达呢?
2. (在学生讨论的基础上,教师指导) 回忆“力的图形”后,分析力的作用点的大小、方向、作用点 重点分析力的作用点对运动的相对和绝对影响.
设计意图:
1.将教材内容转化为具有潜在意义的问题,让学生对问题有强烈的意识,学生的整个学习过程就会变成“猜”、“吃”、“糊”、“烦恼”、“忐忑”、“期待”。寻找理由和论据的过程。
2.我们知道,学习总是与一定的知识背景或情境有关。 在实际情境中学习使学生能够利用他们现有的知识和经验来吸收和索引他们当前正在学习的新知识。由此获得的知识不仅易于维护,而且易于转移到不熟悉的问题情境中。
(2)提供真实的背景材料,形成假设。
信息仅供参考
1.船以 /s 的速度航行。众所周知,一条河流长 m,宽 150m。船到对岸需要多长时间?
2.到达彼岸?这句话的实质含义是什么? (学生讨论并期望回答:参考文献未知。)
3.如何将实际问题抽象为数学问题? (同学们交流讨论,期待回答:要确定一个量,有时除了知道它的大小,还要知道它的方向。)
设计意图:
1.教师站在学生智力发展略超前(即思维最近发展)的边界,通过问题引导问题,促进学生“数形结合”思维的形成。
2.学生交流讨论后,将实际问题抽象为数学问题,并给出抽象的数学符号和表示。
(3)引导探索,寻找解决方案。
1.如何补充以上问题?从我们学到的知识中,我们必须增加“方向”的要求。
信息仅供参考
2.导向的本质是什么?也就是说,位移的本质是什么?预期答案:大小和方向的统一。
3.零向量、单位向量、平行向量、等向量、共线向量等序列化概念有什么关系? (重点明确。)
设计意图:
在老师的指导下,在积累现有探索经验的基础上,学生们讨论交流,评价每一个其他,共同完成了“数形结合”的心理建设。
2.本题旨在让学生不只“只看书”,敢于并善于质疑、批评和超越书本和老师。这是一种创新素质的突出表现,它使学生不满足于现状,执着追求。
3.尽可能揭示认知思维方法的全貌,让学生从整体上把握解决问题的方法。
(4)总结结论,加强理解。
经过指导,同学们总结出“数与形结合”的思路——“数”和“形”是同一个问题的两个方面。 “数”的性质。
信息仅供参考
设计意图:促进学生数学思维方法的形成,引导学生掌握“数与形相结合”的思维方法.
(5)变体扩展与重构。
教师指导:这里我们已经知道,如果我们要解决一些抽象的数学问题,可以借助图形来解决,这是向量的理论基础。
下面我们继续学习一些与向量相关的概念,并引导学生使用模型演示进行观察。
概念一:长度为0的向量称为零向量。
概念2:长度等于单位长度的向量称为单位向量。
概念3:具有相同或相反方向的非零向量称为平行(或共线)向量。 (规定:零向量与任意向量平行。)
概念4:长度相同、方向相同的向量称为等向量。
设计意图:
材料仅供参考
1.学生在教师的指导下,在积累已有探索经验的基础上进行研究。讨论交流,互相评价,共同完成有向线段与向量关系的构建。
2.通过这些概念的比较,可以使学生加强对“矢量”概念的理解,从而更好地“结合数字和形状”。
3。让学生对教学思想方法及其对应的情境有更熟练的认识,并将这种认识和思维储存在大脑中,随时提取应用。
(6)总结反馈调整。
1.知识内容:
比如设O为正六边形A B C D E F的中心,分别写出图形和向量O A ,O B、O C 是相等的向量。
2.运用数学思维方法培养创新素质总结:
善于发现现实生活中的问题,从而提炼出相应的解数学题。发现,作为一种意识,可以解释为“探索问题的意识”;作为一种能力,发现可以解释为“发现新事物”的能力,是培养创造力的基本途径。
信息仅供参考
b.解决问题采用了“数与形相结合”的数学思想,体现了数学思维方法是解决问题的根本途径。
C.探索问题变体的过程是创新思维活动过程中的多维整合过程。知识重组的过程是一个多维度的整合过程,是一个高层次的知识综合过程,是对课本知识在更高层次上的概括和总结,有利于形成一种开放的、动态的、具有较强自学能力的知识。再生。系统,使思维具有整体功能和创新能力。
2.设计意图:
1.对知识内容的总结可以使课堂教学所传授的知识尽快转化为学生的知识。质量。
2.总结运用数学方法的创新素质,可以使学生更系统、更深刻地认识数学思维方法在解决问题中的地位和作用,逐步培养学生良好的人格品质。 这是每节课的重要组成部分。
(7)布置作业。
反馈“数形组合”探索过程,梳理知识体系,完成习题内容。
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
一
加强集体备课
优化课堂教学
新的高考形势下,高三数学怎么去教,学生怎么去学
无论是教师还是学生都感到压力很大,针对这一问题备课组在学校和年级部的领导下,在姚老师和高老师以及笪老师的的具体指导下,制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展,培养学生的能力,为其自身的进一步发展打下良好的基础。
在集体备课中我们几位数学老师团结协作,发挥集体力量。
高三数学备课组,在资料的征订,测试题的命题,改卷中发现的问题交流,学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有"学生容易错误"地方的交流又有典型例子的讨论,既有课例的探讨又有信息的交流。在任何地方,任何时间都有我们探讨,争议,交流的声音。集体备课后,各位教师根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。
二
立足课本
夯实基础
高考复习,立足课本,夯实基础。复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩。
三
因材施教
全面提高
我今年带得是一个文科,一个理科班。因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求我从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习,课堂训练,课后作业的布置和课后的辅导的内容也就因人而异,对不同班级,不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题,解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。掌握学情,做到有的放矢。
深入学生中去了解学生的实际学习情况,学习水平和学习能力,及时调整教学内容和课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益。
四
优化练习
提高练习的有效性
知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。练习的讲评是高三数学教学的。一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,有效的提高了学生的应试能力
.
五
加强应试指导
培养非智力因素
充分利用每一次练习,测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题,填空题,要注意寻求合理,简洁的解题途经,要力争"保准求快",对解答题要规范做答,努力作到"会而对,对而全",减少无谓失分
,指导学生经常总结临场时的审题答题顺序,技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题,答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心,纠正不良的答题习惯,优化答题策略,强化一些注意事项。注重"三点",培养学习习惯。
高三复习注意到低起点,重探究,求能力的同时,还注重抓住分析问题,解决问题中的信息点,易错点,得分点,培养良好的审题,解题习惯,养成规范作答,不容失分的习惯。
以上是我们
备课组在上学期的一些具体做法,也可以说是我们
的一些有益的经验。
高中数学课教案 高三数学教案全套篇五
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣。
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1) 已知a(-2,0), b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是( )。
(a)椭圆 (b)双曲线 (c)线段 (d)不存在
(2)已知动点 m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是( )。
(a)椭圆 (b)双曲线 (c)抛物线 (d)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2
5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|
5
入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。
(二)理解定义、解决问题
例2 (1)已知动圆a过定圆b:x2y26x70的圆心,且与定圆c:xy6x910 相内切,求△abc面积的最大值。
(2)在(1)的条件下,给定点p(-2,2), 求|pa|
【设计意图】
运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。
【学情预设】
根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点a的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。
(三)自主探究、深化认识
如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——
练习:设点q是圆c:(x1)2225|ab|的最小值。 3y225上动点,点a(1,0)是圆内一点,aq的垂直平分线与cq交于点m,求点m的轨迹方程。
引申:若将点a移到圆c外,点m的轨迹会是什么?
【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,
可借助“多媒体课件”,引导学生对自己的结论进行验证。
教学目标:1.进一步理解线性规划的概念;会解简单的线性规划问题;
2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;
3.进一步提高学生的合作意识和探究意识。
教学重点:线性规划的概念及其解法
教学难点:
代数问题几何化的过程
教学方法:启发探究式
教学手段:运用多媒体技术
教学过程:1.实际问题引入。
问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?
2.探究和讨论下列问题。
(1)实际问题转化为一个怎样的数学问题?
(2)满足不等式组①的条件的点构成的区域如何表示?
(3)关于x、y的一个表达式z=70x+50y的几何意义是什么?
(4)z的几何意义是什么?
(5)z的最大值如何确定?
让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.
则zmax=6×70+6×50=720
结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.
解题反思:
问题解决过程中体现了那些重要的数学思想?
3.线性规划的有关概念。
什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.
4.进一步探究线性规划问题的解。
问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?
要求:请你写出约束条件、目标函数,作出可行域,求出最优解。
问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?
5.小结。
(1)数学知识;(2)数学思想。
6.作业。
(1)阅读教材:P.60-63;
(2)课后练习:教材P.65-2,3;
(3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。
《一个数列的研究》教学设计
教学目标:
1.进一步理解和掌握数列的有关概念和性质;
2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;
3.进一步提高问题探究意识、知识应用意识和同伴合作意识。
教学重点:
问题的提出与解决
教学难点:
如何进行问题的探究
教学方法:
启发探究式
教学过程:
问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?
研究方向提示:
1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2.研究所给数列的项之间的关系;
3.研究所给数列的子数列;
4.研究所给数列能构造的新数列;
5.数列是一种特殊的函数,可以从函数性质角度来进行研究;
6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1.研究一个数列可以从哪些方面提出问题并进行研究?
2.你最喜欢哪位同学的研究?为什么?
课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?
2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?
开展研究性学习,培养问题解决能力
一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。
“问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。
问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。
二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。
(一)关于“问题解决”课堂教学模式
通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(二)数学学科中的问题解决能力的培养目标
数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。
(三)“问题解决”课堂教学模式的教学流程
(四)“问题解决”课堂教学评价标准
1. 教学目标的确定;
2. 教学方法的选择;
3. 问题的选择;
4. 师生主体意识的体现;
5.教学策略的运用。
(五)了解学生的数学问题解决能力的途径
(六)开展研究性学习活动对教师的能力要求
教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:1说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
2指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
读书破万卷下笔如有神,以上就是一米范文范文为大家带来的5篇《高中数学教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在一米范文范文。
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
2022高中数学教案设计模板 篇2
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
2022高中数学教案设计模板 篇3
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解 算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
2022高中数学教案设计模板 篇4
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习 课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
2022高中数学教案设计模板 篇5
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)
第1单元集合(10学时)
第2单元不等式(8学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第10单元概率与统计初步(16学时)
2.职业模块
第2单元坐标变换与参数方程(12学时)
高三数学复习课一般采用对复习内容进行知识点的罗列整理、例题讲解、变式巩固、归纳小结的课堂模式。这种模式建立在教师对课程标准和考纲的深刻理解和丰富经验基础之上,优势在于知识系统性强、能突出复习的重点和便于操作,但也存在学生自主复习、主动探究不够的问题。特别是对于那些数学基础比较薄弱的学生,他们本身就缺乏对数学知识的系统了解,更不可能主动去整理每章节的知识要点和重点,只能依靠教师去总结罗列知识点,形成知识网络,让学生被动的接受数学知识的纵向和横向联系。
笔者认为,新课标理念下高三数学复习课模式应该体现在:第一层次是学生在头脑中对知识点和解题方法的简单再现;第二层次是通过一系列的学习活动融入了学生积极的思考,使得学生达到对知识理解的加深和应用能力的提高;第三层次解决相应问题中“容易出错和被忽略的问题”,加深印象,尽量在今后的学习中减少和避免类似的错误。我们可以借鉴这样的模式:教师有意设法让学生在活动中展现易犯的错案→学生自己评价判断、发现问题→师生共同分析、纠正错误、解决问题。这样的“三部曲”就很好的避免了教师主观以自己手(口)展现学生易犯的错误,让学生积极主动分析和解决问题,防止教师的“包办”和“灌输”。在这样的课堂上复习已不再是传统意义的“复习”,它不是把上过的课再上一遍,让学生体验到的也不是把走过的路再走一遍,而是有所创新,在已有知识和经验的基础上走一条似曾相识的新路,并从中感受到进步和成功的快乐。它是一个达成新知的连接点,用前瞻的眼光去回顾和总结“过去”,达到另一个新的高度。
一、复习内容
平面向量的概念及运算法则
二、复习重点
向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。
三、具体教学过程
1.学生准备课前预习回家做作业。其具体步骤是:①相应知识的系统梳理;②典型例题的摘录;③搜集平时作业,测验作业中存在的典型错误;④提出针性训练的练习题;⑤准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。
2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。
出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。
答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。
归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。
3.教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。
4.教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。
5.在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。
6.课尾教师进行点评、归纳、小结(最好由学生自己完成),并评选本课“主讲明星”与“最佳评议”。
四、案例分析及其反思
1.让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。
2.由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。
3.组织这样的课堂教学流程,培养了学生口才、组织能力、逻辑思维能力、应变能力、心理承受能力等等,促使学生的个性达到良性的发展。
4.由于改变了课堂的传统座位排法,学生得到了互相帮助的机会,学习较差的学生能直接得到学有余力的同学的帮助和指导,更容易掌握和理解所学的知识,调动兴趣,提高了学习能力。互帮互学为学生营造了一个轻松、愉快的学习氛围。打破教师出题,学生解答的单调教学模式。通过学生自己变式,充分体现学生的主体性,使他们对一类问题有根本性地掌握,起到以点带面的效果。通过以组题的形式让学生通过有目的的联想,探索习题之间的内在联系,明确问题产生的背景,领会问题的实质,进而找到相应的解题策略,培养学生的思维的灵活性和广阔性,进一步完善、深化学生的认知结构。
5、教学模式恰当,引人入胜
“探究讨论式”是一种常用的教学方法。然而,本课探索“向量的应用”却颇有难度,尤其是几何与代数之间的问题转化。为了突破这一难点,首先复习旧知识,预备铺垫,接着设计简单的几何图形中的代数求值问题。教师在思想方法上的点拔,思维层次上的递进,让学生分享自己成果的乐趣,体现了“学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。”的教学理念。整个教学设计,思路清楚,层次转换自然,点拨及时,自然流畅,引人入胜。
6、体现先进理念,合作探索
建构主义认为:学生的学习不是被动的接受,而是一种主动的学习,一种知识的重组或重新建构的过程。因此,学习方式的转变,对学生的学习至关重要,也是二期课改成败的要害。本课注重学生学习方式的转变,教者适时点拨,发现问题,培养探索精神。从轻易混淆的性质入手,让学生发现问题,出现迷惑,接着,对向量平行充要条件的研究,培养了学生思维的深刻性,通过概念的辨析,使学生对向量有了更深的理解,此时推出综合应用题,过渡自然,符合认知规律。同学探究,思维得到进一步的升华,攻克难点,培养了合作精神。通过展示研究成果,让学生感到爱好盎然而布满探索求知的愿望,学生的主体地位得到了淋漓尽致的发挥。体验成功的喜悦,分享快乐,提高了学习的积极性。
熟知,课堂教学“以教师为主导,以学生为主体”这句话好说难做。如何落在实处,本课做了有益的尝试。案例的设计,具有时代气息,以问题为先导,直接引导学生进入思考的境界。教案的设计说明,体现了教者“以学生发展为本的教学理念”。
《数学课程标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能……”。这就是一次很好的机会,教师要鼓励、引导学生敢于质疑、敢于实践,培养学生主动探究问题的能力,转变学生学习方式,即变单一的传授方式为学生自主体验、探究等学习方式。
复习课上都有一个突出的矛盾,那就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。教师可采用“焦点访谈”法较好地解决这个问题,如:例2和例2的变式1的探究,因题目是“入口宽,上手易”,但在连续探究的过程中,在两种方法会得出两个相反的答案这一点上搁浅受阻(这一点被称为“焦点”,其余的则被称为“外围”)。这里教师不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而要在焦点处发动学生探寻突破口,通过交流“访谈”,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。
一、内容和内容解析
本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析
教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。
三、教学问题诊断
在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。
另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b>0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。
四、教学支持条件分析
为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3D技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。
五、教学设计流程图
教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。
六、教法和预期效果分析
本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。
同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。
通过这节课的学习,引领学生多角度、多方位地认识基本不等式,并了解它的几何意义充分渗透数形结合的思想;能在教师的引导下,主动探索并了解基本不等式的证明过程,强化证明的各类方法;
会用基本不等式解决简单的(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。
[核心必知]
1、预习教材,问题导入
根据以下提纲,预习教材P6~P9,回答下列问题、
(1)常见的程序框有哪些?
提示:终端框(起止框),输入、输出框,处理框,判断框、
(2)算法的基本逻辑结构有哪些?
提示:顺序结构、条件结构和循环结构、
2、归纳总结,核心必记
(1)程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、
在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、
(2)常见的程序框、流程线及各自表示的功能
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息
处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
○连接点连接程序框图的两部分
(3)算法的基本逻辑结构
①算法的三种基本逻辑结构
算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的
②顺序结构
顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:
[问题思考]
(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?
提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、
(2)顺序结构是任何算法都离不开的基本结构吗?
提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)程序框图的概念:
(2)常见的程序框、流程线及各自表示的功能:
(3)算法的三种基本逻辑结构:
(4)顺序结构的概念及其程序框图的表示:
问题背景:计算1×2+3×4+5×6+…+99×100。
[思考1]能否设计一个算法,计算这个式子的值。
提示:能。
[思考2]能否采用更简洁的方式表述上述算法过程。
提示:能,利用程序框图。
[思考3]画程序框图时应遵循怎样的规则?
名师指津:
(1)使用标准的框图符号。
(2)框图一般按从上到下、从左到右的方向画。
(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。
(4)在图形符号内描述的语言要非常简练清楚。
(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。
伴随着各行各业的衍生,我们会遇到许许多多的范文类型,范文在我们的生活中随处可见,值得参考的范文有哪些?以下为小编为你收集整理的高中数学教案,供大家参考,希望能帮助到有需要的朋友。圆的方程教学目标掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和...
经过励志的句子小编的认真整理这篇“高中数学教案”问世了。老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。教案的编写需要注重学生问题解决能力的培养和提升。将这篇文章收藏并分享给您的朋友们让更多人了解它!...
在忙碌的工作中,已逐渐步入下一阶段,就意味着我们要开始写岗位的述职报告了。述职报告是任职者向上级评述自己的工作完成得是否到位的一种报告,写好一篇岗位述职报告,重点涉及哪些方面?高中数学教师述职报告范文是编辑为您整理的与您需求相关的一些信息。...
教案课件是教师上课前的必要准备工作,因此,要注意不可以随便草草完成。只有完善的教案和课件,才能有效提升教学质量和效果。在这里,我为您收集了许多优质的关于“小班数学教案”的相关文章,现在与您分享。为了方便下次阅读,请将本文收藏起来,以备查阅!...
在日常的生活当中,我们可能会需要一些学习资料等范文,独具匠心的范文更能受到大家的关注,你也许正需要一些范文作为参考,以下是由小编为大家整理的“高中数学必修教案”,供大家参考借鉴,希望可以帮助到有需要的朋友。 1、棱柱 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平...
随着写作规范的不断完善,我们经常会需要使用到一些范文,掌握范文的撰写对自己会有很大的帮助,范文主要包含哪些内容呢?以下是小编为大家收集的“幼儿园中班数学教案锦集9篇”仅供参考,欢迎大家阅读。教学目标1.能按物体的颜色或形状等某一特征进行间隔排序。2.能大胆地讲述操作活动过程和结果。3.通过操作活动,...
在平时的学习生活中,我们会看到各种各样的范文,范文能够运用到我们生活的方方面面,什么样的范文比较高质量?小编特地为你收集整理“幼儿园中班数学教案集合9篇”,请阅读,或许对你有所帮助!活动目标1、尝试按一定顺序点数树叶,在操作中感知数量的对应。2、乐意分享各种数数的方法,用语言简单讲述操作过程和结果。...
在老师日常工作中,教案课件也是其中一种,每天老师要有责任写好每份教案课件。要知道老师写好教案课件,也会一定程度上影响教学水平。经过细致的分类励志的句子小编为您整合了“中班数学教案”,欢迎阅读希望这篇文章将成为你今天的美好启示并请分享它!...