励志的句子范文大全:接下来将由我们为大家讲解“正数和负数的课件”,如果你觉得这个资源对你有所帮助请收藏并分享给你的朋友。每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。教案的编写需要注重知识与能力的结合和提升。
教学目标
1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;
2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;
3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。
重点深化对正负数概念的理解。
难点正确理解和表示指定方向变化的量,表示相反意义的'量。
教学过程
一、创设情景
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分 别表示它们。
温度计上的-2,0,3分别表示是么意义?
二、自主探究
(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
(2)、20xx年下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%,德国增长1.3%, 法国减少2.4%,英国减少3.5%, 意大利增长0.2%,中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率。
教学目标:
1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
:“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:用正数、负数和零表示零上温度、零下温度和零度.
思考 “0”在实际问题中有什么意义?
归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.
:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?
【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:
中国减少866,印度增长72,
韩国减少130,新西兰增长434,
泰国减少3247, 孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
(课本P6)用正数和负数表示加工允许误差.
问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.
1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是 .
2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?
3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
类比例题,要求学生注意书写格式,体会正负数的应用.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
议一议 你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.
说明 我们把所有的这些数统称为有理数.
试一试 你能对以上各种类型的数作出一张分类表吗?
做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
把所有正数组成的集合,叫做正数集合.
试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
【例1】 把下列各数填入相应的集合内:
,3.1416,0,,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
(2)分数集合{};
(3)负分数集合{ };
(4)非负数集合{ };
(5)有理数集合{ }.
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】(1)引导学生学会画数轴.
第二步:规定从原点向右的方向为正(左边为负方向).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结 整数在数轴上都能找到点表示吗?分数呢?
可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.
【例1】 下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )
【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为cm的线段AB,则线段AB盖住的整点有( )
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
1.规定了 、 、的直线叫做数轴,所有的有理数都可从用上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )
5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .
6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.
教学目标:
1.借助数轴了解相反数的概念,知道互为相反数的位置关系.
2.给一个数,能求出它的相反数.
活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.
交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?
1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.
想一想 (1)上述各对数有什么特点?
(2)表示这四对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的n组数吗?
观察 像这样只有符号不同的两个数叫相反数.
互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.
总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.
2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.
(1)-5.8是 的相反数, 的相反数是-(+3),a的相反数是 ;a-b的相反数是 ,0的相反数是 .
(2)正数的相反数是 ,负数的相反数是 , 的相反数是它本身.
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.
【例3】 化简下列各符号:
(1)-; (2)+{-};
(3)-{-{-…-(-6)}…}(共n个负号).
【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.
【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?
【归纳】 (1)相反数的概念及表示方法.
(2)相反数的代数意义和几何意义.
2.分别写出下列各数的相反数,并把它们在数轴上表示出来.
5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 .
6.若a与a-2互为相反数,则a的相反数是 .
7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“
正数与负数教学课件
教材简析:
《正数和负数》是北师大版数学教科书六年级上册第74、75页的内容,这一课时的教学内容是在四年级初步认识正、负数的基础上,进一步体会正数与负数表示的是具有相反意义的量,正负可以互相抵消,计算简单的正负数相隔部分,探索一些解决问题的策略。
设计思想:本课时“正数和负数”的认识是介于四年级教材中的初步认识和七年级教材中的系统认识之间,因此,教师一定要把握好“度”,充分调动学生积极性,激发学生的学习动机,及时捕捉学生的想法,有针对性地进行指导,在师生双方互动作用的历程中引导学生建构数学知识。
教学目标:
1、在熟悉的生活情境中,进一步体会正负数的意义。
2、会用负数表示一些日常生活中的问题,知道正、负可以互相抵消。
3、训练学生的语言表达能力,指导学生掌握一些解决问题的'策略。
教学重点:在具体情境中体会正、负数的含义,知道正负可以互相抵消。
教学难点:
1、理解负数的意义,知道正负可以互相抵消。
2、计算简单的正、负数相隔部分,探索一些解决问题的策略。
教具准备:课件
课前准备:收集生活中能说明正、负数具有相反意义关系的事例。
教学过程:
一、情境导入
1、课件显示气温计,找到0℃
师述:0℃是水形态的分界线。在0℃时,水是冰水混合物。0℃以上水是液态,0℃以下水是固态,也就是我们说的冰。那么,0℃以上的温度应该怎样读?0℃以下的温度应该怎样读?
(1)学生齐谈
(2)师问:零上的温度和零下的温度表示的是具有什么意义关系的量?生回答。
(3)师问:我们把零上的温度归为什么数?零下的温度归为什么数?
生回答,师板书
2、课件显示一组数据
-2 4 -7.08 +23 - 0 +1.5
(1)读出上面的数据
(2)分类:
A:4 、+23、+1.5(正数)
B:0
C:-2、-7.08、- (负数)
(3)强调:正号可以省略,但负号必须写上。
3、导入课题。
师:今天我们继续认识正、负数
二、探究新知
1、举例说明正数和负数的相反意义
(1)师示范:妈妈今天收到200元,记作+200元,她今天支出200元,又该怎么记作呢?(-200元)
(2)学生举例说明正、负数的相反意义。最后由记分规则引入教材。
2、正、负可以互相抵消。
A、课件显示例题1
(1)明确记分规则
(2)指导学生观察成绩表,解决问题
问题一:三局比赛后六(1)班的得分是多少?你是怎样知道的?六(2)班呢,你是怎样知道的?
问题二:如课六 (1)班要赢六(2)班,至少还需胜多少局?说明理由。
(3)尝试应用
教材第74页 “试一试”第(1)题
(1)导入
(2)理解表中数据的意义
(3)解决问题,并说明理由
问题一:先由学生独立思考,再交流,最后小结:正、负可以互相抵消。
问题二:先由学生说明自己的解题策略,方法可多样。
3、计算简单的正负数相隔部分。
(1)观察太空游戏时间表
提问:在这个数轴时间表上O点是什么时刻?
-3表示什么意思?太空人什么时候穿上太空衣?什么时候修正航线?什么时候做太空实验?
(2)说一说太空人的活动安排(同桌交流)
(3)太空人两餐之间相隔多长时间?
指名回答,交流解题策略。
(4)计算小明、小华相距多少米?
西 小华 小明 东
(单位:米)
-200 -100 0 +100 +200
相距?米
(5)讨论:在一些情况下,正、负可以互相抵消,但求小明、小华相距多少米,能抵消吗?为什么?
(6)结论:在表示数量的多少,正、负可以互相抵消,但求正、负数相隔的部分却不能抵消。
三、检测大过关
1、放映课件
(1)观察图片,思考问题。
(2)填空
A、湖底( )于水平面120m,说明湖有( )米深
B、山峰( )于水平面1600m,说明山有( )米高。
C、湖底与山顶相距( )米。
2、完成“练——练”第1题
(1)理解题意,说明自己解决问题的策略。
(2)小结:正、负可以互相抵消。
3、完成练一练第2题
(1)理解题意,师提问:怎样求温差?
(2)求北京的温差是多少?
讨论:用题目中介绍的方法你会算吗?我们该怎么算呢?
交流:北京的最高气温与最低气温相差的部分在气温计上分了几部分?这两部分啥在一起,就是北京的温度?
四、课堂总结
1、今天我们进一步认识了什么?体会到了什么?
2、你有什么收获?
教学反思:
灵动的心只有在自由的思维空间中才能诞生,教师在教学过程中必须着力营造一个无拘无束的思维空间,巧妙地引导学生,与学生一起分享着探索与应用的快乐,因此,我以认读气温计的温度为切入点,激活学生已有的知识,让全体学生轻松、愉悦地参与到课堂中来。教师有目标,有层次地创设一些有价值的数学问题,循序渐进地让每位学生有自由发现,自由发挥的空间,使数学课堂变得生机勃勃,充满智慧,不断演译精彩。
一、课题引入
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
二、课题研究
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.
在正数的`前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.
于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.
三、巩固练习
例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.
特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元
日期周二周三周四周五
开盘+0.16+0.25+0.78+2.12
收盘-0.23-1.32-0.67-0.65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
〔教学目标〕
一、知识与能力
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
〔重点难点〕本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于数的发展(也即数的扩充),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与
5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是意义相反的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个+号,比如在5的前面添加一个+号就成了+5,把 +5称为一个正数,读作正5.
在正数的前面添加一个-号,比如在5的前面添加一个-号,就成了-5,所有按这种形式构成的数统称为负数.-5读作负5,-5000读作负5000.
于是收入5000元可以记作5000元,也可以记作+5000元,同时支出5000元就可以记作-5000元了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些具有相反意义的量.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm就可以表示成0.5mm,或+0.5mm;如果另一个机器零件的实际尺寸比设计尺寸小0.5 mm,那么就可以表示成-0.5 mm了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作+2,把乙队的净胜球数记作-2.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地硬造出来的一种新数.
例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:收入与支出是一对具有相反意义的量,可以用正数或负数来表示.一般来说,把收入4800元 记作+4800元,而把与之具有相反意义的量支出1600元记作-1600元.
特别提醒:通常具有增加、上升、零上、海平面以上、盈余、上涨、超出等意义的数量,都用正数来表示;而与之相对的、具有减少、下降、零下、海平面以下、亏损、下跌、不足等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表: 单位:元
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据+0.16所表示的实际意义是周二该股票的开盘价比周一的收盘价高出了0.16元;而表中数据-0.23则表示周二该股票收盘时的收盘价比当天的开盘价降低了0.23元.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3 甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
试计算甲、乙、丙三个队各自的总净胜球数.
思路分析:由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.
甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.
总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零. 相信同学们根据上面的分析,自己也能说出乙队总净胜球数为1,丙队总净胜球数为-1.老师可以让学生来试试说说看.
特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或了解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一部分,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.
例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.
思路分析:从上面的叙述可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说最终水位的改变量是零,或者说水位的总变化量是零.
与最初的水位相比先上涨的15cm,可以记作+15cm,而随后又下降了15cm,可以记作-15cm,这样水位又回到了原来最初的位置, 水位的总变化量是零,即这个变化量为(+15cm )+(-15cm )= 0cm.
特别提醒:在表示具有相反意义的量时,如果某个量经两次或多次变化后又回到了最初状态,就可以用0来表示总变化量;或者说这个量的最终变化量是零.
对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所扮演的角色.
培养良好的阅读习惯和提高阅读能力,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说这题其实不难,我也会做,只是没有认真读题罢了.
怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要教师认真考虑的问题。教师对阅读习惯的培养和阅读能力的提高应该投入充足时间,而且一定要持之以恒.
教科书是学生学习时最重要的学习材料,但是很多学生却把教科书放到一边,到处去购买一些价值并不高的参考资料,不认真去挖掘教科书蕴含的丰富营养.这些做法或倾向也是需要教师有意识地去调整的,如果教师能从一开始就引导学生有意识地、自觉地养成阅读教科书的好习惯,养成认真阅读数学问题的好习惯,那么学生理解能力的提高、学习能力的提升都会受益非浅.
一、感受相反方向的数量,经历负数产生的过程。
(1)这些数很特别,都带上了符号,它们是一种“新数”。 -9、-4.5等都叫负数; +7、+988等都叫正数。你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?
用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用 表示。
1、0既不是正数也不是负数。0是正负数的分界。
2、0只表示没有吗?
⑴空罐中的金币数量;
⑵温度中的0℃;
⑶海平面的高度;
⑷标准水位;
⑸身高比较的基准;
0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?
若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。
3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是。
A、全球财富500强中对主要零售业的统计,大荣公司年收入为2530万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。
B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。
C、收入30元与下降2米是具有相反意义的量。
D、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。
F、如果收入增加18元记作+18元,那么-50元表示支出减少50元
5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?
1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;
... ... ... ...
在上述的这些数中,观察它们的规律,回答数-100将在哪一列.
下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家20商品进出口总额的增长率.
思考 :
负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?
有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)
质量 497 501 503 498 496 495 500 499 501 505
质量误差分别为:
如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?
3.说明下面这些话的意义:
①温度上升+3 ℃ ②温度下降+3 ℃
4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?
5.(1)向东走+5m,-6m,0m表示的实际意义是什么呢?
950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和
负数表示每月超额完成计划的吨数各是多少?
本节内容是有理数的一部分,是对小学所学数的范围的补充,特别是首次提出了负数分概念,是以后学习绝对值、数轴、相反数及有理数运算的基础。
根据课程标准的要求,教材的结构与内容分析,学生现有的知识水平和心理结构特点,制定如下教学目标:
1、使学生了解负数是如何产生的,理解正负数及零的含义。
2、知道它们的表示方法,能正确对正负数做一些简单的应用,对生活中的一些正负数现象做一些了解。
3、通过本节的教学,培养学生的想象力,理论联系实践的能力,分析解决问题的能力。
4、对学生进行爱国主义教育,培养学生良好的学习习惯。
为了讲清重点、难点,使学生能达到本节设定的教学目标,我在从教学方法上谈谈。
鉴于初一学生的年龄特点,他们对概念的理解能力不强,而且精神不易长时间集中,但他们的思维活跃,我采用讲解法、讲练结合法,引导学生学生积极思考,调动他们学习的积极性。
首先展示出两幅雪景画,问同学们:从这两幅画中感觉到了什么?估计一下现在的温度和画中的温度是多少?能否用我们所学过的数来表示?
人都是喜欢美丽的东西的,尤其是小孩,两幅美丽的雪景画能更好的激发学生的兴趣,给学生的学习提供丰富多彩的空间。
对画中的温度学生可能会给出一些答案如:零下10度等,这些事不正确的。 接着由我给出答案-10度。
对于未知的东西,学生总会有强烈的好奇心,想知道-10是什么。
我作出回答-10是一个负数。这样就引入了本节课所要学的主要内容——负数。
让学生说出一些生活中带负号的数,这样让学生联系生活实际,感受到我们的身边处处存在着数学。
给出一张山和盆地的海平面高低的数据表,让同学们说明一下表中一些数据的含义。
同学会给出各种不同的答案,有正确的也有错误的,之后由我来说明一下这些数据的正确含义。
接着再问:同学们,既然表中的那些数据有这样的含义,那么正、负数的含义是什么呢?
先由同学们发言,再有老师给出正确的含义。 正数:像3、2、0.8这样大于0的数叫做正数。 负数:像-3、-2、-0.8这样小于0的数叫做负数。
再问同学们:既然正负数的界线是0,那么0又有什么含义呢?
同样,先由同学们发言再由老师总结归纳:0既不是正数也不是负数。 这样有利于提高学生们的分析归纳能力。
给出一组正、负数及零在现实中的应用问题,按组抢答,每道题一个组一个机会,答对加一分,打错不扣分。
这样有利于提高学生的竞争意识,也能活跃课堂气氛,还能让他们对生活中负数的.应用有一些了解。
再针对本节的各个知识点提出一些相应的问题与学生共同探讨解答,巩固提高一下学生对知识点的理解。
在这些解答过程中一学生为主,老师为辅。老师只是在一旁稍作指点及作最后的讲解。这样有利于培养学生独立思考的意识。
先由学生说一下这节课学到了什么,再由老师对本节课的学习做一下总结,结合板书重新整理一下知识点,这样能让学生的学习目的更加明确。
最后先由和学生探讨一下本节所学内容对我们的生活有什么帮助再由老师点明这节课所学知识在我们生活中的一些作用。
这样能让学生知道我们所学的知识在我们的生活中是有用的,能促使他们把所学的知识与我们的生活实际联系起来,有利于学生们的成长。
我所布置得作业是2、4、7(选做)2和4是基础和综合应用,适合大部分的学生,而7是拓广探索,适合于成绩较好的同学,让他们更加的深入学习。
第二课时
三维目标
一。知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二。过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三。情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。
2.难点:正数、负数概念的综合运用。
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备
投影仪。
教学过程
四、复习提问课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家20xx年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的.意义。
六、巩固练习
1.课本第5页的第8题。
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。
2.补充练习。
若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。
七、课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。
八、作业布置
1.课本第5页习题1.1第4、5、6、7题。
九、板书设计
1.1正数和负数
第二课时
1、复习巩固,例题讲解。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
学习目标 1、了解负数是从实际需要中产生 的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量.
重点
难点 重点:正、负数的概念,具有相反意义的量
难点:理解负数的概念和数0表示的量的意义
教学流程 师生活动 时间 复备标注
一、导入新课
我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.
在生活中,仅有整数和分数够用了吗?
二、新授
1、自学章前图、第2 页,回答下列问题
数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
2、自学第2—3页,回答下列问题
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.
3、用正负数表示具有相反意义的量:自学课本3—4页
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
归纳小结:一是意义相反,二是有数量,而且是同类量.
完成3页练习
4、例题
自学例题,完成 归纳。寻找问题。
完成4页练习
三、课堂达标练习
课本第5页练习1、2、3、4、7、8.
四、课堂小结
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标
本节内容是有理数的一部分,是对小学所学数的范围的补充,特别是首次提出了负数分概念,是以后学习绝对值、数轴、相反数及有理数运算的基础。
初中数学教案说课稿(教学目标)
根据课程标准的要求,教材的结构与内容分析,学生现有的知识水平和心理结构特点,制定如下教学目标:
1、使学生了解负数是如何产生的,理解正负数及零的含义。
2、知道它们的表示方法,能正确对正负数做一些简单的应用,对生活中的一些正负数现象做一些了解。
3、通过本节的教学,培养学生的想象力,理论联系实践的能力,分析解决问题的能力。
4、对学生进行爱国主义教育,培养学生良好的学习习惯。
初中数学教案说课稿(教学重点、难点)
重点:正负数的含义 难点:负数和零的含义
为了讲清重点、难点,使学生能达到本节设定的教学目标,我在从教学方法上谈谈。
初中数学教案说课稿(教学方法)
鉴于初一学生的年龄特点,他们对概念的理解能力不强,而且精神不易长时间集中,但他们的思维活跃,我采用讲解法、讲练结合法,引导学生学生积极思考,调动他们学习的积极性。
初中数学教案说课稿(教学程序)
1、创设情境,初步感知
首先展示出两幅雪景画,问同学们:从这两幅画中感觉到了什么?估计一下现在的温度和画中的温度是多少?能否用我们所学过的数来表示?
人都是喜欢美丽的东西的,尤其是小孩,两幅美丽的雪景画能更好的激发学生的兴趣,给学生的学习提供丰富多彩的空间。
对画中的温度学生可能会给出一些答案如:零下10度等,这些事不正确的。 接着由我给出答案-10度。
对于未知的东西,学生总会有强烈的好奇心,想知道-10是什么。
我作出回答-10是一个负数。这样就引入了本节课所要学的主要内容——负数。
2、充分感知,引导构建
让学生说出一些生活中带负号的数,这样让学生联系生活实际,感受到我们的身边处处存在着数学。
给出一张山和盆地的海平面高低的数据表,让同学们说明一下表中一些数据的含义。
同学会给出各种不同的答案,有正确的也有错误的,之后由我来说明一下这些数据的正确含义。
接着再问:同学们,既然表中的那些数据有这样的含义,那么正、负数的含义是什么呢?
先由同学们发言,再有老师给出正确的含义。 正数:像3、2、0.8这样大于0的数叫做正数。 负数:像-3、-2、-0.8这样小于0的数叫做负数。
再问同学们:既然正负数的界线是0,那么0又有什么含义呢?
同样,先由同学们发言再由老师总结归纳:0既不是正数也不是负数。 这样有利于提高学生们的分析归纳能力。
3、结合实践,综合应用
给出一组正、负数及零在现实中的应用问题,按组抢答,每道题一个组一个机会,答对加一分,打错不扣分。
这样有利于提高学生的竞争意识,也能活跃课堂气氛,还能让他们对生活中负数的.应用有一些了解。
再针对本节的各个知识点提出一些相应的问题与学生共同探讨解答,巩固提高一下学生对知识点的理解。
在这些解答过程中一学生为主,老师为辅。老师只是在一旁稍作指点及作最后的讲解。这样有利于培养学生独立思考的意识。
4、回顾课堂,小结延伸
先由学生说一下这节课学到了什么,再由老师对本节课的学习做一下总结,结合板书重新整理一下知识点,这样能让学生的学习目的更加明确。
最后先由和学生探讨一下本节所学内容对我们的生活有什么帮助再由老师点明这节课所学知识在我们生活中的一些作用。
这样能让学生知道我们所学的知识在我们的生活中是有用的,能促使他们把所学的知识与我们的生活实际联系起来,有利于学生们的成长。
5、作业
我所布置得作业是2、4、7(选做)2和4是基础和综合应用,适合大部分的学生,而7是拓广探索,适合于成绩较好的同学,让他们更加的深入学习。
教学目标
1、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
2、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
3、情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:
正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:
正确理解负数的概念。
3、关键:
创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教学过程
一、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3……;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:—3,—2,—2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
二、讲授新课
(1)像—3,—2,—2.7%这样的数(即在以前学过的0以外的数前面加上负号“—”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5……就是3,2,0.5……一个数前面的“+”。“—”号叫做它的符号,这种符号叫做性质符号。
(2)中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度、用正负数表示具有相反意义的量。
(5)把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为—155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)请学生解释课本中图1.1—2,图1.1—3中的正数和负数的含义。
(7)你能再举一些用正负数表示数量的实际例子吗?
(8)例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
三、巩固练习
课本第3页,练习1、2、3、4题。
四、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数、正数就是我们过去学过的数(除0外),在正数前放上“—”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数、如果原数是一个负数,那么前面放上“—”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
五、作业布置
课本第5页习题1、1复习巩固第1、2、3题。
1、了解负数是从实际需要中产生 的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量。
我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.
数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
课本第5页练习1、2、3、4、7、8.
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用
您需要什么主题的内容小编为您准备了一份“正数和负数的课件”。教案课件是老师上课中非常关键的一个工具,因此需要老师精心设计好教案课件。教案是教师在教学过程中具体操作的依据。希望这篇文章能启发您对这个问题的思考!...
推荐一篇有关“正数和负数的课件”的文章给大家希望你们喜欢,供您在工作和学习中参考切勿抄袭行为。教案课件也是老师工作中的一部分,就需要我们老师要认认真真对待。设计教案需要注重信任和尊重学生的个性和需求。...
随着写作规范的不断完善,范文的用途越来越广,高质量的范文能得到更多人参考,你也许正需要一些范文作为参考,以下是小编精心收集整理的正数和负数教案收藏14篇,带给大家。欢迎你阅读与收藏。 预习提示 1、在实际问题中,为便于记录、计算引入正、负数体会其引入情境; 2、理解正、负数表示一对具有...
教案课件是教师必不可少的教学工具,我们需要静下心来认真编写教案课件。只有制定出优质的教案,才能有效提高教育教学质量。那么,我们应该从哪些方面来编写教案课件呢?如果您想获取更多相关知识和建议,我建议您阅读一本名为《负数课件》的书籍。这些资料会为您提供参考和使用,希望您能在学习和工作中取得成功!...
教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。 良好的教案和课件是实现多种教育理念的关键,怎么才能快速写好一份优质教案课件?根据您的要求,栏目小编为您整理了“数学函数课件”,希望您能多留意我们网站的更新以确保及时获取最新资讯!...
每位教师都需要在上课之前准备自己的教案和课件,相信大家对这个过程并不陌生。教案和课件对于教师在课堂上的表现有着非常重要的影响,所以在准备教案和课件时需要注意以下几点。首先,教案和课件需要清晰明了地表达教学目标和内容,确保学生能够理解和掌握。其次,教案和课件的布局和格式应该简洁而美观,能够帮助学生更好...
老师每一堂课都需要一份完整教学课件,每个老师都需要将教案课件设计得更加完善。教学内容是教案设计的核心要点,写好教案课件需要注意哪些方面呢?这是我从网络上搜索到的一篇“负数的课件”文章,本文仅供参考之用希望能对您有所帮助!...
通过深思熟虑,编辑为大家精心挑选了最实用的“认识负数课件”。教案就像上课前教师的课前准备,每一位教师都应该精心规划他的教案内容。学生的反馈能够照亮教学的专业性。请对本文中的实践意义深加思考!...