励志的句子的编辑耗费了大量时间和精力为大家准备了今天的“有理数的乘方课件”,这篇文章很有价值请务必收藏起来方便下次阅读。教案课件是老师需要精心准备的东西,大家可以开始写自己课堂教案课件了。同时在写教案课件时,设计内容需要让学生更快地理解各知识要点。
有理数的乘方课件【篇1】计算:(1),,;
(2),,;
(3),,.
学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.
师:引导学生观察(3)题,与两者从意义上截然不同:
,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.
【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的'乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.
(三)变式训练,培养能力
(出示投影4)
计算:
(1),,,,;
(2),,,;
(3),,,.
【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.
(四)课堂小结
师:今天我们一起学习了有理数的乘方.有理数的乘方运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)
作乘法运算看 作乘方运算看
2×2×2=8
因数是2 底数是2
因数的个数为3指数是3
积是8幂是8
【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.
(五)思考题
(出示投影6)
1.3的平方是多少?-3的平方是多少?平方得9的数有
接下来是栏目小编为您精心准备的“乘方课件”。每个老师在上课前需要规划好教案课件,又到了老师开始写教案课件的时候了。教案是将教化育注重实效的重要指导。请相信您会从这篇文章中得到解决方案!
乘方课件 篇1教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.
1.幂的乘方
幂的乘方,底数不变,指数相乘,即
( 都是正整数)
幂的乘方
的推导是根据乘方的意义和同底数幂的乘法性质.
幂的乘方不能和同底数幂的乘法相混淆,例如不能把 的结果错误地写成 ,也不能把 的计算结果写成 .
幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如 ;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如 .
2.积和乘方
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即
( 为正整数).
三个或三个以上的积的乘方,也具有这一性质.例如:
3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).
4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如, ;还要防止运算性质发生混淆: 等等.
三、教法建议
1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如
对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以 为例,再一次说明
可以写成 .这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.
2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:
(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.
(2)记清幂的运算与指数运算的关系:
(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);
幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).
了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.
3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种
每个老师都需要在课前有一份完整教案课件,而课件内容需要老师自己去设计完善。教案是协调教学过程的重要手段。出于您的需要,我们为您提供“有理数的乘法课件”,给你建议试试看或许可以改变你的想法!
有理数的乘法课件 篇1一、教学目标
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;
2.培养学生观察、归纳、概括及运算能力
3 使学生掌握多个有理数相乘的积的符号法则;
二、教学重点和难点
重点:有理数乘法的运算.
难点:有理数乘法中的符号法则.
三.教学手段
现代课堂教学手段
四.教学方法
启发式教学
五、教学过程
(一)、研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解①32=6
答:上升了6厘米.
问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)
把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.
把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.
有理数的乘法课件 篇2积的符号 ;
积的符号 。
2完成下面填空:
(2)(-10)×(- )×(-0.1)× 6 =________
(3)(-10)×(- )×(-0.1)×(-6)=________
(4)(-5)×(- )× 3 ×(-2)× 2=________
(5)(-5)×(-8.1)× 3.14 × 0=________
(1)8+(-0.5)×(-8)× (2)(-3)× ×(- )×(- )
(3)(- )× 5 × 0 ×(- ) (5) (-6)×(+37) × (- )×(- )
4.计算:(1)(-4)×(-7)×(-25) (2)(- )×8×(- )
(3)(-0.5)×(-1)× ×(-8) (4)(-5)-(-5)× ×(-4).
(5)(-3)×(7)×-3 ×(-6) (6)(-1)×(-7)+6×(-1)×
有理数的乘法伴着我们工作的不断优化,范文的用途越来越广,范文包含各种各样的文章,有哪些范文值得参考呢?小编经过搜集和处理,为你提供小数乘小数课件汇集,欢迎大家借鉴与参考,希望对大家有所帮助。
小数乘小数课件 篇1教学内容:p70页例7及“试一试和练一练”,练习十二2、3题。
教学目标:使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。
教学重点:正确运用计算法则计算小数乘小数的乘法
教学难点:理解小数乘小数的意义,掌握小数乘小数的计算法则
教学过程
一、复习
0.52+0.48=0.17+0.33=3.6+6.4=
0.8×3=3.7×5=46×0.3=
二、新授:
1、教学例7。
(1)出示例7
(2)从图中你知道了哪些信息?
(3)提问:如果要求小明房间的面积有多大?先估计一下。
3.8×3.2≈()(说一说估计的方法)
(4)提出:列竖式计算怎样算呢?
把这两个小数都看成整数,很快计结果。
3.8×1038
×3.2×10×32
7676
114÷100114
12.161216
相乘后怎样才能得到原来的积?
(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。
2、第65页试一试。
提出:要求阳台的面积是多少平方米?怎样列式?
计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)
强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68
3、小数乘小数的计算法则。
(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?
(2)同桌讨论:说说小数乘小数应该怎样计算?
小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
三、巩固练习
1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)
2、完成第65页练一练第2题(学生独立完成,集体校对)
3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)
4、完成练习十二第3题。(说说数量关系,再列式计算)
四、课堂小结:今天你学到了